Kinetic benefits and thermal stability of orotate phosphoribosyltransferase and orotidine 5'-monophosphate decarboxylase enzyme complex in human malaria parasite Plasmodium falciparum.
نویسندگان
چکیده
We have previously shown that orotate phosphoribosyltransferase (OPRT) and orotidine 5'-monophosphate decarboxylase (OMPDC) in human malaria parasite Plasmodium falciparum form an enzyme complex, containing two subunits each of OPRT and OMPDC. To enable further characterization, we expressed and purified P. falciparum OPRT-OMPDC enzyme complex in Escherichia coli. The OPRT and OMPDC activities of the enzyme complex co-eluted in the chromatographic columns used during purification. Kinetic parameters (K(m), k(cat) and k(cat)/K(m)) of the enzyme complex were 5- to 125-folds higher compared to the monofunctional enzyme. Interestingly, pyrophosphate was a potent inhibitor to the enzyme complex, but had a slightly inhibitory effect for the monofunctional enzyme. The enzyme complex resisted thermal inactivation at higher temperature than the monofunctional OPRT and OMPDC. The result suggests that the OPRT-OMPDC enzyme complex might have kinetic benefits and thermal stability significantly different from the monofunctional enzyme.
منابع مشابه
Co-expression of human malaria parasite Plasmodium falciparum orotate phosphoribosyltransferase and orotidine 5’-monophosphate decarboxylase as enzyme complex in Escherichia coli: a novel strategy for drug development
Background: Human malaria parasite Plasmodium falciparum operates de novo pyrimidine biosynthetic pathway. The fifth and sixth enzymes of the pathway form a heterotetrameric complex, containing two molecules each of orotate phosphoribosyltransferase (OPRT) and orotidine 5’-monophosphate decarboxylase (OMPDC). Objective: Define the function of OPRT-OMPDC enzyme complex of P. falciparum by co-exp...
متن کاملInsights into the pyrimidine biosynthetic pathway of human malaria parasite Plasmodium falciparum as chemotherapeutic target.
Malaria is a major cause of morbidity and mortality in humans. Artemisinins remain as the first-line treatment for Plasmodium falciparum (P. falciparum) malaria although drug resistance has already emerged and spread in Southeast Asia. Thus, to fight this disease, there is an urgent need to develop new antimalarial drugs for malaria chemotherapy. Unlike human host cells, P. falciparum cannot sa...
متن کاملMalaria Parasite Pyrimidine Nucleotide Metabolism: A Promising Drug Target
Malaria is a major cause of morbidity and mortality in the tropical and subtropical endemic countries worldwide. This is largely due to the emergence and spread of resistance to most antimalarial drugs currently available, including the first-line treatment artemisinins. Thus, to fight this disease, there is an essential requirement to develop new antimalarial drugs for malaria chemotherapy. Pl...
متن کاملHost Reticulocytes Provide Metabolic Reservoirs That Can Be Exploited by Malaria Parasites
Human malaria parasites proliferate in different erythroid cell types during infection. Whilst Plasmodium vivax exhibits a strong preference for immature reticulocytes, the more pathogenic P. falciparum primarily infects mature erythrocytes. In order to assess if these two cell types offer different growth conditions and relate them to parasite preference, we compared the metabolomes of human a...
متن کاملKinetic and conformational studies of the orotate phosphoribosyltransferase:orotidine-5'-phosphate decarboxylase enzyme complex from mouse Ehrlich ascites cells.
Complex U is composed of orotate phosphoribosyltransferase (EC 2.4.2.10) and orotidine-5’-phosphate decarboxylase (EC 4.1.1.23), the last two enzymes of the de nouo pathway for pyrimidine biosynthesis. Since the two enzymes have proved inseparable so far, the equilibrium constant for the phosphoribosyltransferase activity has been determined under conditions where the decarboxylase activity was...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biochemical and biophysical research communications
دوره 390 2 شماره
صفحات -
تاریخ انتشار 2009